Michio Kaku: Black Hole Nonsense Like ‘Alice In Wonderland’

Share Us.

Michio asks: “What lies on the other side of a black hole? If someone foolishly fell into a black hole, will they be crushed by its immense gravity, as most physicists believe, or will they be propelled into a parallel universe or emerge in another time era? To solve this complex question, physicists are opening up one of the most bizarre and tantalizing chapters in modern physics. They have to navigate a minefield of potentially explosive theories, such as the possibility of “wormholes,” “white holes,” time machines, and even the 10th dimension! This controversy may well validate J.B.S. Haldane’s wry observation that the universe is “not only queerer than we sup- pose, it is queerer than we can suppose.” This delicious controversy, which delights theoretical physicists but boggles the mind of mere mortals, is the subject of my recent book, Hyperspace.”

We think you will love what he has to says about black holes, wormholes and why it’s like “Alice In Wonderland!” Here in a nutshell, is his short Resume.

Michio Kaku born January 24, 1947. is an American theoretical physicist, futurist, and popularizer of science. Kaku is a professor of theoretical physics at the City College of New York and CUNY Graduate Center. He has written several books about physics and related topics, has made frequent appearances on radio, television, and film, and writes online blogs and articles. He has written three New York Times best sellers: Physics of the Impossible (2008), Physics of the Future (2011), and The Future of the Mind (2014). Kaku has hosted several TV specials for the BBC, the Discovery Channel, the History Channel, and the Science Channel.

From his website “Dr. Michio Kaku” in his own words:

Black Holes: Collapsed Stars

A black hole, simply put, is a massive, dead star whose gravity is so intense than even light cannot escape, hence its name. By definition, it can’t be seen, so NASA scientists focused instead on the tiny core of the galaxy M87, a super massive “cosmic engine” 50 million light years from earth. Astronomers then showed that the core of M87 consisted of a ferocious, swirling maelstrom of superhot hydrogen gas spinning at l.2 million miles per hour. To keep this spinning disk of gas from violently flying apart in all directions, there had to be a colossal mass concentrated at its center, weighing as much as 2 to 3 billion suns! An object with that staggering mass would be massive enough to prevent light from escaping. Ergo, a black hole.

The Einstein-Rosen Bridge

But this also revives an ongoing controversy surrounding black holes. The best description of a spinning black hole was given in 1963 by the New Zealand mathematician Roy Kerr, using Einstein’s equations of gravity. But there is a quirky feature to his solution. It predicts that if one fell into a black hole, one might be sucked down a tunnel (called the “Einstein-Rosen bridge”) and shot out a “white hole” in a parallel universe! Kerr showed that a spinning black hole would collapse not into a point, but to a “ring of fire.” Because the ring was spinning rapidly, centrifugal forces would keep it from collapsing. Remarkably, a space probe fired directly through the ring would not be crushed into oblivion, but might actually emerge unscratched on the other side of the Einstein-Rosen bridge, in a parallel universe. This “wormhole” may connect two parallel universes, or even distant parts of the same universe.

Through the Looking Glass

The simplest way to visualize a Kerr wormhole is to think of Alice’s Looking Glass. Anyone walking through the Looking Glass would be transported instantly into Wonderland, a world where animals talked in riddles and common sense wasn’t so common.

The rim of the Looking Glass corresponds to the Kerr ring. Anyone walking through the Kerr ring might be transported to the other side of the universe or even the past. Like two Siamese twins joined at the hip, we now have two universes joined via the Looking Glass. Some physicists have wondered whether black holes or worm- holes might someday be used as shortcuts to another sector of our universe, or even as a time machine to the distant past (making possible the swashbuckling exploits in Star Wars). However, we caution that there are skeptics. The critics concede that hundreds of wormhole solutions have now been found to Einstein’s equations, and hence they cannot be lightly dismissed as the ravings of crack pots. But they point out that wormholes might be unstable, or that intense radiation and sub-atomic forces surrounding the entrance to the wormhole would kill anyone who dared to enter. Spirited debates have erupted between physicists concerning these wormholes. Unfortunately, this controversy cannot be re- solved, because Einstein’s equations break down at the center of black holes or wormholes, where radiation and sub-atomic forces might be ferocious enough to collapse the entrance. The problem is Einstein’s theory only works for gravity, not the quantum forces which govern radiation and sub-atomic particles. What is needed is a theory which embraces both the quantum theory of radiation and gravity simultaneously. In a word, to solve the problem of quantum black holes, we need a “theory of everything!”

Via: http://mkaku.org/

Leave a Reply